A GERMACRANOLIDE AND A LONGIPINENE DERIVATIVE FROM EUPATORIADELPHUS PURPUREUS*

FERDINAND BOHLMANN,† MANIRUDDIN AHMED,† ROBERT M. KING‡ and HAROLD ROBINSON‡

†Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, W. Germany; ‡Smithsonian Institution, Washington, DC 20560, U.S.A.

(Received 18 November 1980)

Key Word Index—Eupatoriadelphus purpureus; Compositae; sesquiterpene lactone; germacranolide; longipinene derivative; p-hydroxyacetophenone derivatives.

Abstract—The roots of Eupatoriadelphus purpureus contain tridecapentaynene, β -pinene and five p-hydroxyacetophenone derivatives. By contrast, the aerial parts have germacrene D, lupeol and its isomers, coumarin, a new sesquiterpene tiglate and a new germacranolide.

From the small genus Eupatoriadelphus (Compositae, tribe Eupatorieae) [1] so far only one species has been studied chemically in detail [2]. The constituents isolated showed a close relationship to the genus Eupatorium. Both genera were placed in the Eupatoriinae group [3]. We have now investigated a further species, E. purpureus (L.) K. et R. The roots afforded tridecapentaynene, β -pinene and the p-hydroxyacetophenone derivatives 2 [4], whose presence was reported earlier [5], 3 [6], 4 [7], 5 [2] and 6 [8]. The aerial parts gave germacrene D, lupeol and its isomers, coumarin, the tiglate 1 and the germacranolide 7. The structure of 1 was deduced readily by comparing the ¹HNMR data (see Experimental) with those of the known angelate [7], while the ¹H NMR data of 7 were very close to those of other 8β -acyloxycostunolides [9, 10]. Though the couplings $J_{7,8}$ and $J_{8,9'}$ could not be clearly observed as the H-8 signal was a broadened doublet, the stereochemistry at C-8 was clear, as in 8αacyloxy compounds large couplings are always observed. The nature of the ester residue clearly followed from the ¹H NMR data (Table 1). As the H-3' signal was a quartet, the angelate had to be placed at C-5'. The compounds now isolated indicate, once more, a close relationship between Eupatoriadelphus and Eupatorium, especially since a germacranolide with a 8β -acyloxy group was isolated, while p-hydroxyacetophenones, also present in Eupatorium species, are particularly widespread. The chemistry of the other genera in the Eupatoriinae group is not so similar to that of Eupatorium.

EXPERIMENTAL

The fresh plant material (voucher 79/1493, Botanical Garden Berlin-Dahlem) was extracted with Et₂O-petrol, 1:2 and the extracts obtained were separated first by column chromatography (Si gel) and further by TLC (Si gel). Known compounds were identified by comparing their IR and ¹H NMR spectra with

7β-Tiglinoyloxy-1-oxo-α-longipinene (1). Colourless oil; IR $V_{\text{max}}^{\text{CCL}}$ cm⁻¹: 1710, 1650 (C=CCO₂R), 1680, 1620 (C=CC=O); MS m/z (rel. int.): 316.204 (M⁺, 1) (C₂₀H₂₈O₃), 233 (M - COR, 11), 216 (M - RCO₂H, 5), 83 (C₄H₇CO⁺, 100), 55 (83 - CO, 72); ¹H NMR (CDCl₃): 5.79 (dq, J = 1, 1 Hz, H-2), 2.72 (br d, J = 6 Hz, H-4), 2.22 (br s, H-5), 4.77 (br d, J = 10 Hz, H-7), 2.84 (br d, J = 6 Hz, H-11), 1.08 (s, H-12), 1.01 (s, H-13), 0.94 (s, H-14), 2.06 (d, J = 1.5 Hz, H-15); OTigl: 6.87 qq, 1.84 br d, 1.88 br s.

$$[\alpha]_{24^{\circ}}^{2} = \frac{589}{+24} \frac{578}{+26} \frac{546}{+31} \frac{436 \text{ nm}}{+75} (c = 0.4, \text{ CHCl}_{3}).$$

[5'-Angeloyloxytiglinoyloxy]-costunolide (7). Colourless gum; IR ν_{max}^{CCl4} cm⁻¹: 1770 (γ-lactone), 1720, 1650 (C=CCO₂R); MS

Table 1. ¹H NMR spectral data of germacranolide 7 (270 MHz, CDCl₃, TMS as internal standard)

H-1	4.90 br dd	H-3'	7.14 q	
H-2 \	2.4-2.0 m	H-4'	2.00 d	
H-3 ∫		H-5'1	4.95 d	
H-5	4.77 br d	H-5'2	4.86 d	
H-6	5.12 dd	H-3"	6.09 qq	
H-7	2.93 br ddd	H-4"	1.94 dq	
H-8	5.85 br d	H-5"	1.83 dq	
H-9	2.87 br dd			
H-9'	2.35 br d			
H-13	6.26 d			
H-13'	5.58 d			
H-14	1.48 br s			
H-15	1.78 d			

^{*}Part 349 in the series "Naturally Occurring Terpene Derivatives". For Part 348 see Bohlmann, F., Jakupovic, J. and Schuster, A. (1981) *Phytochemistry* 20, 1891.

J (Hz): 1,2 = 10; 1,2' = 7; 5,6 = 6,7 = 10; 5,15 = 1; 7,8 ~ 1; 8,9 = 4.5; 9,9' = 15; 3',4' = 3",4" = 7; 3",5" = 4",5" = 1.5; 5'₁,5'₂ = 11.5.

those of authentic compounds. The roots (650 g) afforded 20 mg β -pinene, 1 mg tridecapentaynene, 100 mg 2, 30 mg 3, 50 mg 4, 100 mg 5 and 25 mg 6, while the aerial parts (500 g) gave 40 mg germacrene D, 100 mg lupeol and its Δ 9,11 and 12,13-isomers (ca 2:1:1), 30 mg coumarin, 20 mg 1 (Et₂O-petrol, 1:3) and 30 mg 7 (Et₂O-petrol, 3:1).

2 R = H
3 R = OH
4 R = OAc

5 R = Ang6 R = Tigl

m/z (rel. int.): 428 (M⁺, 0.1), 329 (M - $^{\circ}O_2$ CR, 0.4), 230.131 (M - $^{\circ}RCO_2$ H, 11) ($^{\circ}C_1$ 5 $^{\circ}H_{18}O_2$), 215 (230 - $^{\circ}Me$, 4), 83 ($^{\circ}C_4$ H $_7$ CO $^+$, 100), 55 (83 - CO, 69).

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589}{+33} \frac{578}{+36} \frac{546}{+42} \frac{436 \text{ nm}}{+42} (c = 0.9, \text{ CHCl}_3).$$

Acknowledgements—We thank the Deutsche Forschungs-gemeinschaft for financial support and the Botanical Garden Berlin-Dahlem for the plant material.

REFERENCES

- 1. King, R. M. and Robinson, H. (1970) Phytologia 19, 431.
- 2. Bohlmann, F., Zitkowski, P., Suwita, A. and Fiedler, L. (1978) *Phytochemistry* 17, 2101.

- 3. Robinson, H. and King, R. M. (1977) The Biology and Chemistry of the Compositae (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds.) p. 462. Academic Press, London.
- 4. Kamthong, B. and Robertson, A. (1939) J. Chem. Soc. (London) 933.
- 5. Trimble, H. (1980) J. Am. Pharm. 62, 73.
- Bohlmann, F., Dutta, L. N., Dorner, W., King, R. M. and Robinson, H. (1979) Phytochemistry 18, 673.
- Bohlmann, F., Mahanta, P. K., Suwita, A., Natu, A. A., Zdero, C., Dorner, W., Ehlers, D. and Grenz, M. (1977) Phytochemistry 16, 1973.
- Bohlmann, F., Zitzkowski, P., Suwita, A. and Fielder, L. (1978) Phytochemistry 17, 2101.
- Drozdz, B., Grabarczyk, H., Samek, Z., Holub, M., Herout, V. and Sorm, F. (1972) Collect. Czech. Chem. Commun 37, 1546
- Bohlmann, F. and Dutta, L. N. (1979) Phytochemistry 18, 847.